#수리논리학 #수학기초론:

#수리논리학 #수학기초론:

2024-05-22 MetaWord mathematicallogic meta

#수학기초론

(“수리 논리학 Mathematical Logic” 2024)

  • “수리 논리학 mathematical logic” 2024
  • 수리논리학(數理論理學, 영어: mathematical logic) 또는 기호논리학은 논리학에서 사용하는 명제들을 수학적인 기호로 표시하는 학문이다. 고틀로프 프레게, 버트런드 러셀, 폴 조지프 코언 등이 개척한 분야로서 일상 언어와 같은 자연언어의 사용에서 올수있는 복잡성과 오류의 용이성을 제거하고 명제를 효과적으로 쉽게 다룰 수 있도록 하기 위해 도입한 현대 논리학 이론으로서, 기호를 많이 사용하여 ’기호 논리학’(symbolic logic)이라고도 한다. 컴퓨터 과학 및 철학논리와 밀접하게 연관되어 있다. 이 분야는 논리학 및 형식논리의 타 분야로의 응용에 관한 수학적 연구를 포함하고 있으며, 통합적으로는 형식 체계의 표현력과 형식 증명 체계의 연역 가능성에 관한 연구를 포함한다. 수리논리학은 종종 집합론, 모형 이론, 재귀 이론, 증명 이론, 구성적 수학 등의 하위 분야로 나뉜다. 이 분야들은 공통적으로 1차 논리와 정의가능성 등의 기본적인 논리학적 결과들을 바탕으로 하고 있다. 수리논리학은 처음 출현한 이후 줄곧 수학기초론의 연구와 영향을 주고 받았다. 이 연구는 19세기 말 기하학, 대수학, 해석학의 공리적 구조의 개발과 함께 시작되었다. 20세기 초에는 수학기초론의 무모순성을 증명하려는 다비트 힐베르트의 연구에 의해 다듬어졌다. 쿠르트 괴델과 게르하르트 겐첸 등은 그 연구에 일부 해결 방법을 제시하였고 무모순성 증명과 관련한 문제들을 명확히 하였다. 비록 몇몇 정리들이 집합 이론의 공리 체계에서 증명 불가능하지만, 집합 이론에서의 연구는 거의 모든 일반적인 수학은 집합의 형태로 형식화할 수 있다는 것을 보여주었다. 수학기초론에서 최근의 연구는 종종 모든 수학을 전개할 수 있는 이론을 찾기보다는 수학의 어느 부분이 특정 형식 체계에서 형식화할 수 있는지 찾는 데 중점을 두고 있다.

Related-Notes

References

마지막 수정일자